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Subharmonic resonance of Venice gates in waves.
Part 2. Sinusoidally modulated incident waves

By P A O L O S A M M A R C O† , H O A N G H. T R A N,
O D E D G O T T L I E B‡ AND C H I A N G C. M E I

Department of Civil and Environmental Engineering,
Massachusetts Institute of Technology, Cambridge, MA, 02139, USA

(Received 11 March 1997 and in revised form 17 June 1997)

In order to examine the effects of finite bandwidth of the incident sea spectrum on
the resonance of the articulated storm gates for Venice Lagoon, we consider a narrow
band consisting of the carrier frequency and two sidebands. The evolution equation
for the gate oscillations now has a time-periodic coefficient, and is equivalent to a non-
autonomous dynamical system. For small damping and weak forcing, approximate
analysis for local and global bifurcations are carried out, and extended by direct
numerical simulation. Typical bifurcation scenarios are also examined by laboratory
experiments.

1. Introduction
In Part 1 (Sammarco et al. 1997) we have derived the nonlinear evolution equation

describing the out-of-phase rotation of Venice gates resonated subharmonically by
normally incident waves. The case of uniform amplitude was investigated in detail.
Since the frequency band of sea waves in nature is usually finite, we wish to examine
in this Part the effects of an idealized narrow band consisting of a slightly detuned
central (carrier) frequency 2ω = 2 (ω0 + ∆ω) and two sidebands 2ω+Ω and 2ω−Ω,
with Ω = ε2Ω2ω0 � 1. The envelope of the incident waves is therefore modulated
sinusoidally in time with the period 2π/Ω

A2 = A2 + Ã2 cosΩ2t2, (1.1)

where t2 = ε2ω0t
′ denotes the dimensionless slow time with t′ being the physical time.

Since the time derivative of A2 introduces terms of O(ε2) smaller than those present,
the evolution equation must be

−iθt2 = ω2θ + (cN + icR) θ2θ∗ + cFA2θ
∗ + (1 + i) δ2cLθ + icQ|θ|θ. (1.2)

with A2 depending on time through (1.1). In terms of physical quantities the extended
evolution equation is

− i

ω0

θ′t′ =
∆ω

ω0

θ′ + (cN + icR) θ′
2
θ′
∗

+ cF

(
A′

b′
+
Ã′

b′
cosΩt′

)
θ′
∗

+ (1 + i) δcLθ
′ + icQ|θ′|θ′. (1.3)

Owing to the time dependence of a coefficient, the above dynamical system is
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non–autonomous: complicated bifurcations such as period-doubling and chaos are
expected as the properties of the incident waves are varied. In this Part we wish to
examine such bifurcations and describe comprehensive experiments in a wave basin
for a battery of gates, with the dual objectives of illustrating the nonlinear dynamics
of a novel project in coastal engineering, and revealing the rich physics embodied by
the Landau–Stuart equation.

To simplify subsequent analysis of (1.3) we retain the normalization used in Part
1, except that the amplitude A′ of the steady part of the incident wave is used as a
scale below:

α =
cR

cN
, β =

cL

cF A′/b′
, γ =

cQ(
cN cF A′/b′

)1/2
,

W =
∆ω/ω0

cF A′/b′
, ϑ =

(
cN

cF

)1/2
θ′(

A′/b′
)1/2

, T = cF
A′

b′
ω0t

′.

 (1.4)

The evolution equation becomes

−iϑT = Wϑ+ (1 + iα) ϑ2ϑ∗ + (1 + a cos σT ) ϑ∗ + (1 + i) βϑ+ iγ|ϑ|ϑ. (1.5)

As before α represents the normalized damping due to radiation, β and γ the
normalized linear and quadratic viscous damping respectively, and W represents
the normalized detuning, while the normalized angular displacement ϑ is essentially
the ratio between the angular displacement θ′ and the square root of the incident

wave amplitude divided by the modal half-period,
(
A′/b′

)1/2
. As new bifurcation

parameters, a and σ are respectively the normalized amplitude and frequency of
modulation of the incident wave

a =
Ã′

A′
, σ =

Ω

ω0cFA′/b′
. (1.6)

They will also be referred to as the forcing amplitude and frequency, respectively, of
the dynamical system (1.5).

2. The non-autonomous dynamical system
With the introduction of action-angle coordinates R and ψ via ϑ = iR1/2eiψ , the

complex equation (1.5) can be expressed as a real, non-autonomous dynamical system

RT = −2R
[
αR + (1 + a cos σT ) sin 2ψ + β + γR1/2

]
= −Hψ − GR,

ψT = W + β + R − (1 + a cos σT ) cos 2ψ = HR − Gψ.

}
(2.1)

Here H denotes the Hamiltonian function

H(R, ψ, T ) = 1
2
R2 + R (W + β)− R (1 + a cos σT ) cos 2ψ, (2.2)

while G denotes the gradient function

G(R, ψ) = 2
3
αR3 + βR2 + 4

5
γR5/2. (2.3)

Later, the numerical results for ϑ can be more conveniently displayed in Cartesian
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coordinates, ϑ = X + iY , in terms of which (1.5) takes the following form:

XT = (1 + a cos σT −W − β)Y − βX − (Y + αX)
(
X2 + Y 2

)
−X

(
X2 + Y 2

)1/2

=−HY − GX,
YT = (1 + a cos σT +W + β)X − βY + (X − αY )

(
X2 + Y 2

)
− γY

(
X2 + Y 2

)1/2

=HX − GY .


(2.4)

The Hamiltonian function H is now

H(X,Y , T ) = 1
2

(
X2 − Y 2

)
(1 + a cos σT ) + 1

2
(W + β)

(
X2 + Y 2

)
+ 1

4

(
X2 + Y 2

)2
,

(2.5)

while the gradient function G(X,Y ) is

G(X,Y ) = 1
2
α
(
X2 + Y 2

)2
+ 1

2
β
(
X2 + Y 2

)
+ 1

3
γ
(
X2 + Y 2

)3/2
. (2.6)

Note that the viscous boundary layer effects enter the conservative part as a frequency
shift through the combination W + β.

Both for gaining analytical insight on the complex behaviour of the above system
(2.1) or (2.4), and for comparison with the laboratory experiments where damping
of all varieties is small, we first give approximate local and global analyses for small
coefficients α, β, γ and low modulational amplitude a. The results will be used to
check and to guide the more general numerical integration as well as laboratory
experiments.

3. The mathematical limit of zero damping and forcing
Setting to zero the forcing amplitude a and all the damping coefficients (radiation,

linear and quadratic) in (2.1), the reduced dynamical system in action-angle form is

RT = −2R sin 2ψ, ψT = W + R − cos 2ψ. (3.1)

There are at most three fixed points: one at the origin and two elsewhere,

O =
{

0, 1
2

cos−1 W
}
, s = {1−W, 0} , u =

{
−1−W, π

2

}
. (3.2)

The Jacobian of the linearized system is

J(R, ψ) =

[
−2 sin 2ψ −4R cos 2ψ

1 2 sin 2ψ

]
. (3.3)

It follows easily that the origin is an unstable saddle if |W | < 1, and a centre with

oscillation frequency λ = 2
(
W 2 − 1

)1/2
if |W | > 1. The fixed point s exists only if

W < 1 and is a centre with oscillation frequency λ = 2 (1−W )1/2. The fixed point
u exists if W < −1 and is an unstable saddle. Sample phase trajectories obtained
by plotting the contours of constant Hamiltonian are shown in figure 1(a, b, c) for
W = 1.5, W = 0 and W = −1.5 respectively.

As an alternative, the linearized system in Cartesian form is

XT = (1−W )Y − Y
(
X2 + Y 2

)
, YT = (1 +W )X +X

(
X2 + Y 2

)
. (3.4)

There are at most five, instead of three, fixed points located at

O = {0, 0} ,
{

s1

s2

}
=
{

0,± (1−W )1/2
}
,

{
u1

u2

}
=
{
± (−1−W )1/2 , 0

}
. (3.5)
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Denoting

Rs = 1−W, ψs = 0, (3.6)

the fixed point s is related to s1,2 of (3.5) by{
Xs1

Xs2

}
= ∓Rs1/2 sinψs,

{
Ys1
Ys2

}
= ±Rs1/2 cosψs. (3.7)

Similarly, by denoting

Ru = −1−W, ψu = π/2 (3.8)

u is related to u1,2 by{
Xu1

Xu2

}
= ∓Ru1/2 sinψu,

{
Yu1

Yu2

}
= ±Ru1/2 cosψu. (3.9)

Phase portraits equivalent to figure 1(a, b, c) are shown in figure 1(d, e, f).
For weak oscillations around s or s1,2 the effects of weak dissipation and forcing

can be easily analysed for the simplest case where the modulational frequency of the
incident waves σ is not equal to any rational multiples of λ = 2 (1−W )1/2 ≡ 2Rs

1/2.
The gate envelope θ then responds linearly without resonance and oscillates at
the same modulational frequency. The synchronous modulational response has been
recently brought to the attention both theoretically and experimentally by Jiang et al.
(1996) in the context of Faraday waves. By straightforward perturbation analysis (for
a � 1 and α, β, γ = O

(
a2
)
) it can be shown that the natural oscillation must damp

out in time, and, in action-angle form, the forced oscillation is given to the leading
order by

R = Rs −
aλ2

σ2 − λ2
cos σT + O(a2), ψ =

aσ

σ2 − λ2
sin σT + O(a2). (3.10)

Thus the envelope of the gates responds without resonance and synchronously to
the incident wave modulation. Equation (3.10) of course becomes singular as σ → λ,
corresponding to synchronous modulational resonance. The perturbation analysis also
reveals other possibilities of subharmonic and superharmonic resonances. In the next
section these resonances will be analysed asymptotically by the method of multiple
scales, as in Trulsen & Mei (1995).

4. Local bifurcations of the gate envelope
Because of the myriad frequencies involved, it is important to stress that σ is

the normalized frequency of the wave envelope and λ is the normalized natural
frequency of the gate envelope. Recall that the incident wave has the carrier frequency
2 (ω0 + ∆ω)), and the gate oscillates at the central frequency ω0 + ∆ω. In this section
we shall focus on the effects of a slight detuning of the wave envelope modulation
from the gate envelope oscillation, i.e. the difference between mσ and nλ, with m, n
being integers. This modulational detuning should be distinguished from W , which
is the normalized detuning ∆ω of the carrier wave from the natural frequency ω0 of
the trapped mode (cf. (1.4)).

4.1. Subharmonic modulational resonance

Let µ be a small ordering parameter; the frequency detuning of the incident wave
envelope as well as the modulation amplitude and damping also are small, i.e.

σ = 2
(
λ+ µ2d2

)
, a = µ2a2, α = µ2α2, β = µ2β2, γ = µ2γ2. (4.1)
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Figure 1. Sample phase planes for limiting Hamiltonian system. (a, b, c) Phase planes in action-angle
coordinates. Trajectories flow from left to right. (a) W = 1.5; (b) W = 0; (c) W = −1.5. (d, e, f)
Phase planes in Cartesian coordinates. Trajectories flow counterclockwise. (d) W = 1.5; (e) W = 0;
(f) W = −1.5.

We Taylor expand system (2.1) about the non-trivial fixed point s, R = Rs ≡
1 − W, ψ = ψs ≡ 0, and introduce the new slow time scale T2 = µ2T and the
multiple-scale expansions

R = Rs +

3∑
p=1

µpRp + O(µ4), ψ =

3∑
p=1

µpψp + O(µ4). (4.2)

The O(µ) system is homogeneous and corresponds to an undamped oscillator of
natural frequency λ = 2Rs

1/2 and without forcing (a = 0)

R1T + λ2ψ1 = 0, ψ1T − R1 = 0. (4.3)

The response is a limit cycle and can be expressed in the form

R1 = R11e
−i(λ+µ2d2)T + ∗, ψ1 = ψ11e

−i(λ+µ2d2)T + ∗, (4.4)

where R11 = R11(T2), ψ11 = ψ11(T2) are undetermined at this order.
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At O(µ2), we have

R2T + λ2ψ2 = −4R1ψ1 − λ2
(
λ2α2 + 4β2 + 2λγ2

)
/8,

ψ2T − R2 = 2ψ2
1 + β2 − a2 cos

[
2
(
λ+ µ2d2

)
T
]
.

 (4.5)

Thus only the zeroth and second harmonics are forced through the quadratic terms.
The second harmonic is also forced by the modulation amplitude a2. The solution is
of the form

R2 = R20 + R22e
−i2(λ+µ2d2)T + ∗, ψ2 = ψ20 + ψ22e

−i2(λ+µ2d2)T + ∗. (4.6)

The amplitudes of the forced harmonics (2,0) and (2,2) are easily found.
At O(µ3), the system is

R3T + λ2ψ3 =−R1T2
− 4R2ψ1 − 4R1ψ2 − R1

(
λ2α2 + 2β2 + 3

2
λγ2

)
−λ2ψ1a2 cos

[
2
(
λ+ µ2d2

)
T
]
,

ψ3T − R3 =−ψ1T2
+ 4ψ1ψ2 − a3 cos

[(
λ+ µ2d2

)
T
]
.

 (4.7)

Since the problem for the first harmonic (3,1) is inhomogeneous, secular terms must
be removed, yielding an evolution equation for R11

−iR11T2
=

(
1

λ
+

12

λ3

)
R2

11R
∗
11 + i

(
λ2

2
α2 + β2 +

3

4
λγ2

)
R11

+

(
d2 +

2β2

λ

)
R11 +

(
λ

4
+

1

λ

)
a2R

∗
11, (4.8)

ψ11 =
i

λ
R11. (4.9)

Equation (4.9) can be normalized to:

−ir11τ = r2
11r
∗
11 + iBr11 + Dr11 + r∗11, (4.10)

where

r11 =
R11

a
1/2
2

2

λ

(
λ2 + 12

λ2 + 4

)1/2

. (4.11)

The normalized effective damping coefficient is

B =

(
λ2

2
α2 + β2 +

3

4
λγ2

)[
a2

(
λ

4
+

1

λ

)]−1

. (4.12)

The normalized detuning is

D =
1

a2

(
d2 +

2β2

λ

)(
λ

4
+

1

λ

)−1

, (4.13)

and the normalized slow time is

τ = T2a2

(
λ

4
+

1

λ

)
. (4.14)

Equation (4.10 ) which is also of the Landau–Stuart form governs the envelope
of the limit cycle, itself the envelope of the gate oscillations. Using action-angle
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variables, r11 = ρ1/2eiφ, and separating real and imaginary part of (4.10), we obtain
the dynamical system

ρτ = −2ρ (B − sin 2φ) , φτ = ρ+ D + cos 2φ. (4.15)

Let us begin with the trivial fixed point at the origin ρ = 0, cos 2φ = −D. Linearizing
the first of (4.15) for ρ = 0 + ρ′, with ρ′ � 1,

ρ′τ = −2Bρ′ ∓
(
1− D2

)1/2
, (4.16)

we get

ρ′ ∝ e
2
[
∓(1−D2)

1/2−B
]
τ
. (4.17)

This fixed point is unstable if

B < 1 and |D| <
(
1− B2

)1/2
, (4.18)

and stable otherwise. Using the definition (4.12) for B, the first condition above for
instability becomes

a2 >

(
λ2

2
α2 + β2 +

3

4
λγ2

)(
λ

4
+

1

λ

)−1

, (4.19)

or in physical variables

Ã′

A′
>

[
λ2

2

cR

cN
+

cL

cFA′/b′
+

3

4
λ

cQ(
cNcFA′/b

)1/2

](
λ

4
+

1

λ

)−1

. (4.20)

Recall by definition (1.4), λ = 2 (1−W )1/2 is related to detuning ∆ω via W =

∆ωb′/ω0cFA
′
.

Since λ → 0 as W → 1, the threshold for a2 decreases to zero. In view of (1.4)
for W , it follows that this subharmonic modulational resonance is easily excited by
weak modulation of incident waves, when the detuning ∆ω is positive and close to
the right-hand branch TP of the region of instability shown in figure 7 of Part 1.

Using (4.12) and (4.13), the threshold of instability |D| =
(
1− B2

)1/2
corresponds

to a hyperbola in the (d2, a2)-plane,

d2 = ±
[
a2

2

(
λ

4
+

1

λ

)2

−
(
λ2

2
α2 + β2 +

3

4
λγ2

)2
]1/2

− 2β2

λ
. (4.21)

The region of instability lies above the hyperbola, whose vertex is located at

d2 = −2β2

λ
, a2 =

(
λ2

2
α2 + β2 +

3

4
λγ2

)(
λ

4
+

1

λ

)−1

(4.22)

at which D = 0 and B = 1, marking the lowest a2 that can destabilize the envelope.
Returning to (4.15), two other fixed points with finite amplitudes can be found as

the roots of the quadratic equation

ρ2 + 2Dρ+ D2 + B2 = 1. (4.23)

To distinguish these fixed points from s, u of the unmodulated dynamical system in
Part 1, the solutions of 4.23) are denoted by

sm = {ρs, φs} , um = {ρu, φu} , (4.24)



334 P. Sammarco, H. H. Tran, O. Gottlieb and C. C. Mei

4

3

2

1

0

a2

–2 –1 0

d2 = (σ/2–λ)/µ2

1 2

TP

II

SP

III

Figure 2. Region of instability for the subharmonic modulational resonance; W = 0,
α2 = β2 = γ2 = 0.1, for which B = 0.45. Region I: stable trivial fixed point s. Region II: un-
stable trivial fixed point um coexisting with sm (region of instability). Region III: stable trivial fixed
fixed point coexisting with sm and um.

where {
ρs
ρu

}
= −D ±

(
1− B2

)1/2
, (4.25)

and {
φs
φu

}
=

{
0
π/2

}
± 1

2
sin−1 B. (4.26)

The roots (4.25) are real if B < 1. Since ρ > 0 it is necessary that D <
(
1− B2

)1/2
for

sm to exist, and D < −
(
1− B2

)1/2
for um to exist.

The Jacobian of the system evaluated at the fixed points (sm, um) is

J =

[
0 −4ρ (ρ+ D)
1 −2B

]
, (4.27)

where ρ indicates either ρs or ρu. The eigenvalues are

−B ±
[
B2 − 4ρ (D + ρ)

]1/2
. (4.28)

and the larger eigenvalue is positive when

ρ > −D. (4.29)

Therefore, comparing (4.29) with (4.25), it is immediately clear that sm is always stable
and um is always unstable.

In figure 2 a sample region of modulational instability is shown for α2 = β2 = γ2 =
0.1 and λ = 2 (W = 0). Along the + branch of (4.21), denoted by TP in figure 2,
the origin loses stability in a transcritical pitchfork bifurcation; along the − branch,
denoted by SP, the origin loses stability in a subcritical pitchfork bifurcation and the
non-trivial response jumps to a finite value. Whenever the detuning d2 and amplitude
a2 of the modulation fall above the hyperbola (region II in figure 2), the subharmonic
limit cycle envelope sm occurs. To the left of SP and above the vertex of the hyperbola
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Figure 3. Bifurcation diagrams for α = β = γ = 0.01 and W = 0. Solid and dashed lines denote
the stable and the unstable analytical solutions respectively; open circles the numerical solution. (a)
a = 0.05; (b) a = 0.10.

(region III in figure 2) the stable non-trivial solution sm coexists with the unstable um
and the stable trivial fixed point.

Now let us examine the effects of detuning W of the carrier wave. It follows
from (4.21) that as λ → 0 (i.e. as W → 1) the region of instability becomes the
whole half–plane a2 > 0. At the same time the response decreases to zero, as can
be deduced from (4.12), (4.13) and the explicit expression for the non-trivial root

ρs = −D +
(
1− B2

)1/2
. From (1.4), the condition W → 1 implies that the carrier

wave amplitude A′ and detuning ∆ω fall near the right branch TP of the threshold
of instability in figure 7 of Part 1. Thus, although this modulational resonance can
be excited more easily, the excited response must be very small in magnitude.

Sample bifurcation diagrams of modulational instability are shown for W = 0 and
α = β = γ = 0.01 in figure 3(a, b). The approximate predictions of the amplitude
of the first harmonic 2µ|R11| (solid lines) are confirmed by the result of numerical
integration of (1.5) (circles) for a = 0.05 (figure 3a) and a = 0.10 (figure 3b), the
resonance threshold being a = 0.045.
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4.2. Synchronous modulational resonance

To excite this resonance, let the modulation detuning and damping terms be O(µ2)
and the modulation amplitude even smaller:

σ = λ+ µ2d2, α = µ2α2, β = µ2β2, γ = µ2γ2, a = µ3a3. (4.30)

Expanding as in (4.2) we find the O(µ) system is again the free oscillator, so the
response is of the form (4.4). Pursuing the perturbation analysis to O(µ3) as in the
last section, we find by removing the secularity for (3,1) an evolution equation for R11

of the Landau–Stuart type

−iR11T2
=

(
1

λ
+

12

λ3

)
R2

11R
∗
11 + i

(
λ2

2
α2 + β2 +

3

4
λγ2

)
R11 +

(
d2 +

2β2

λ

)
R11 +

λ

4
a3,

(4.31)

ψ11 =
i

λ
R11. (4.32)

Equation (4.32) differs from (4.9) only in the forcing term. Fixed points of the above
equation are the amplitudes of the limit cycle around s. Straightforward analysis
similar to that for subharmonic resonance shows that there can be one (stable) or
three fixed points (two stable and one unstable), depending on the detuning d2.
Because of the triple-valued region, hysteresis and jump phenomena are possible. The
bifurcation diagram is typical of other synchronous resonance of nonlinear systems,
similar to the Duffing problem with a soft spring (see for example Jordan & Smith
1987). Details are omitted here (see Sammarco 1996).

We have also carried out a similar asymptotic analysis for the superharmonic modu-
lational resonance where the modulational frequency is σ =

(
λ+ µ2d2

)
/2 (Sammarco

1996).
As is well known for dissipative systems, period-doubling by subharmonic resonance

can be a prelude to chaos and strange attractors. This will be examined numerically
in a later section.

5. Global bifurcations
Recall in figure 1 that in the Hamiltonian limit there is a saddle point for |W | < 1

and two saddle points for W < −1. With additional higher-order terms the homoclinic
or heteroclinic orbits through the saddles may be disturbed to yield horseshoe tangles
and to provide the lower bound for global chaos. For the onset of these global
bifurcations we employ the Melnikov method (Guckenheimer & Holmes 1983) which
applies to a slightly perturbed system of the form

RT = f1(R, ψ) + µg1(R, ψ, T ), ψT = f2(R, ψ) + µg2(R, ψ, T ), (5.1)

with f1, f2 being Hamiltonian, g1, g2 periodic in T , and µ � 1. Let the homo-
clinic orbit of the associated Poincaré map of the Hamiltonian part be denoted by{
Rh(T ), ψh(T )

}
. Then the zero of the Melnikov function

M =

∫ ∞
−∞

dT
[
f1(R

h, ψh)g2(R
h, ψh, T )− f2(R

h, ψh)g1(R
h, ψh, T )

]
(5.2)

gives approximately the threshold for Smale’s horseshoe which is a prelude to global
chaos. We now assume that all dampings and modulational forcing are O(µ) which is
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a small ordering parameter unrelated to µ in the last section:

α = µα1, β = µβ1, γ = µγ1, a = µa1. (5.3)

Then system (2.1) can be recast in the form (5.1) with

f1 = −2R sin 2ψ,
g1 = −2R

(
α1R + β1 + γ1R

1/2 + a1 cos σT sin 2ψ
)

f2 = W + R − cos 2ψ,
g2 = − (β1 + a1 cos σT cos 2ψ) .

 (5.4)

First we analyse the homoclinic connection for |W | < 1, then the heteroclinic con-
nections for W < −1.

5.1. Homoclinic orbit, |W | < 1

Referring to figure 1(b) (for W = 0), the homoclinic orbit
{
Rh, ψh

}
is the phase curve

that goes from {R, ψ} = {0,−π/4} to {0, π/4}. Since the orbit passes through the
origin of the phase plane, the Hamiltonian (2.2) with a = β = γ = 0 vanishes:

H(R, ψ) = H
(
0, 1

2
cos−1 W

)
= 0, i.e. 1

2
R +W − cos 2ψ = 0. (5.5)

It follows from f2 of (5.4) that

ψhT = cos 2ψ −W, (5.6)

which can be integrated with the initial condition that ψh(0;W ) = 0. Afterwards
Rh can be obtained from (5.5), with the initial condition Rh(0;W ) = 2 (1−W ). The
results are

Rh(T − T0;W ) =
2
(
1−W 2

)
W + cosh [2κ (T − T0)]

, (5.7)

ψh(T − T0;W ) = arctan

{(
1−W
1 +W

)1/2

tanh [κ (T − T0)]

}
. (5.8)

For brevity we have defined κ =
(
1−W 2

)1/2
.

The Melnikov function is given by

M(σ, T0;W, α1, β1, γ1, a1) =

∫ ∞
−∞

dT [f1g2 − f2g1]R=Rh,ψ=ψh

=

∫ ∞
−∞

dT 2Rh
[
a1

(
W + Rh

)
sin 2ψh cos σT − β1 sin 2ψh

+
(
W + Rh − cos 2ψh

) (
α1R

h + β1 + γ1R
h1/2
)]
. (5.9)

Substituting expressions (5.7) and (5.8) into the integrands of (5.9), we get

M = Πα(W )α1 +Πβ(W )β1 +Πγ(W )γ1 −Πa(σ,W )a1 sin σT0 (5.10)

where all but Πγ(W ) can be explicitly evaluated by contour integration†

Πα(W ) =

∫ ∞
−∞

dT 2Rh
2 (
W + Rh − cos 2ψh

)
= 4

[(
1 + 2W 2

)(π
2
− arctan

W

κ

)
− 3Wκ

]
, (5.11)

† O. Gottlieb, 1995, in an unpublished study on edge waves.
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Πβ(W ) =

∫ ∞
−∞

dT 2Rh
(
W + Rh − cos 2ψh − sin 2ψh

)
= 4

[
W

(
−π

2
+ arctan

W

κ

)
+ κ

]
, (5.12)

Πγ(W ) =

∫ ∞
−∞

dT 2Rh
3/2 (

W + Rh − cos 2ψh
)

=
(
21/2κ

)5
∫ ∞
−∞

dT {W + cosh [2κ (T − T0)]}−5/2
, (5.13)

−Πa(σ,W ) sin σT0 =

∫ ∞
−∞

dT 2Rh
(
W + Rh

)
sin 2ψh cos σT

= −πσ2 sin σT0 cosh

(
σ arccosW

2κ

)/
sinh

(πσ
2κ

)
. (5.14)

Πγ can only be evaluated numerically. Details can be found in Sammarco (1996).
For fixed α1, β1, γ1,W , σ, the Melinkov function (5.10) oscillates sinusoidally with

T0. Therefore the necessary condition M = 0 is met when

a1 =
Πα(W ) α1 +Πβ(W ) β1 +Πγ(W ) γ1

Πa(σ,W )
. (5.15)

For fixed damping constants, homoclinic tangle occurs when the forcing amplitude
a1 exceeds the above value. Equation (5.15) is linear in α1, β1, γ1. Therefore, for fixed
W and σ, the smaller the dissipation coefficients, the lower the threshold for forcing
a1 to give rise to horseshoe tangles.

On the other hand, for given values of the dissipation coefficients, (5.15) has a
nonlinear dependence on both the detuning of the carrier wave W and on the
frequency of modulation σ. Figure 4 shows the dependence of the threshold on σ for
W = −0.99, 0, 0.9. First, the coefficients of the three damping coefficients α1, β1, γ1,

Πα(W )

Πa(σ,W )
,

Πβ(W )

Πa(σ,W )
,

Πγ(W )

Πa(σ,W )
, (5.16)

are shown in figure 4(a, b, c). Then in figure 4(d) the threshold (5.15) is displayed for
α1 = β1 = γ1 = 0.1. For different W the three ratios in (5.16) depend similarly on
σ. They all have a minimum which decreases in magnitude and shifts towards lower
frequency for larger W . Hence positively detuned carrier waves with low frequency
of modulation can lead to homoclinic tangles even with very small a.

It can also be shown that for a given σ and varying W , the threshold a1 has a
minimum which decreases with σ, and moves towards positive W .

Let us compare the period-doubling threshold with the threshold for homoclinic
tangles. Multiplying (4.21) by µ2 we get the threshold for period doubling in terms of
σ = 2

(
λ+ µ2d2

)
and a:

σ = 2

λ±
[
a2

(
λ

4
+

1

λ

)2

−
(
λ2

2
α+ β +

3

4
λγ

)2
]1/2

− 2β

λ

 , (5.17)

where λ = 2 (1−W )1/2. Similarly multiplication of (5.15) by µ yields

a =
Πα(W ) α+Πβ(W ) β +Πγ(W ) γ

Πa(σ,W )
. (5.18)
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For α = β = γ = 0.1 and W = 0 the two thresholds (5.17) and (5.18) are plotted in
figure 5. Above the threshold of Melnikov, a homoclinic tangle is possible. In region
II period doubling occurs; in region III synchronous and period-doubled responses
are both possible. Figure 5 shows that for a given modulational frequency σ, as the
amplitude of the modulation a increases, period doubling precedes homoclinic tangles.
It can also be seen that natural frequency of the centre λ and critical frequency for a
homoclinic tangle are of comparable magnitude.

5.2. Heteroclinic orbits, W < −1

When W < −1, heteroclinic orbits are the phase curves connecting {R, ψ} =
{−1−W,−π/2} and {−1−W,π/2} above and below the centre s. They have been
illustrated for W = −1.5 in figure 1(c).

The two heteroclinic connections for W < −1 correspond to a constant Hamilto-
nian with

H(R, ψ) = H(−1−W,∓π/2) ≡ − 1
2
(1 +W )2. (5.19)

Using (2.2) for the Hamiltonian with a = 0 and solving for R gives

R = −W + cos 2ψ ± [(1 + cos 2ψ) (−1− 2W + cos 2ψ)]1/2 . (5.20)
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Substitution in f2 of (5.4) gives a first-order equation in ψ only:

ψT = ± 1

2 cosψ
(
−W − 1 + cos2 ψ

)1/2
, (5.21)

which can be integrated subject to the initial conditions at T = T0, ψ
h±(0;W ) = 0.

Rh± can then be obtained from (5.20). Finally, the heteroclinic orbits Rh±, ψh± are

Rh±(T − T0;W ) = −(1 +W )
(−W )1/2 cosh [2κ (T − T0)]± 1

(−W )1/2 cosh [2κ (T − T0)]∓ 1
, (5.22)

ψh±(T − T0;W ) = arctan

{(
W

1 +W

)1/2

sinh [2κ (T − T0)]

}
, (5.23)

where the ± superscript refers to the upper and lower orbits and κ is the shorthand for

(−1−W )1/2; note that Rh± satisfies the initial condition Rh±(0;W ) =
[
(−W )1/2 ± 1

]2

.

Upon substitution of (5.22) (5.23) into (5.9) we obtain for each of the two orbits a
Melnikov function which has the same form as (5.10), but with

Πα±(W ) = ∓4W

[
(W − 2)

(
arctan κ−

{
π
0

})
+ 3κ

]
, (5.24)

Πβ±(W ) = ±4

[
W

(
arctan κ−

{
π
0

})
+ κ

]
, (5.25)

Πγ±(W ) = ±4 (1 +W )2 [W (1 +W )]1/2

∫ ∞
−∞

dT cosh [2κ (T − T0)]

×
{

(−W )1/2 cosh [2κ (T − T0)]± 1
}1/2

×
{

(−W )1/2 cosh [2κ (T − T0)]∓ 1
}−5/2

, (5.26)

Πa±(σ,W ) = πσ2

cosh

{
σ

[
arccos

(
1/ (−W )1/2

)
−
{
π
0

}]/
2κ

}
sinh

(
πσ /2κ

) . (5.27)

Πα±, Πβ± and Πa± are found analytically. Πγ± can be evaluated only numerically.
Details are given in Sammarco (1996).

In figure 6(a, b, c) the three ratios of (5.16) are plotted for the lower and upper
orbits respectively by dashed and solid lines. With the same line styles, figure 6(d)
shows the thresholds for α1 = β1 = γ1 of the two orbits.

For each orbit the contributions from the three dissipation sources (radiation, linear
and quadratic viscous) behave similarly. As the detuning frequency W decreases from
−1, the thresholds increase for both the upper orbits (solid lines) and the the lower
orbit (dashed line). Note that for detuning increasingly closer to −1, horseshoe tangles
of the lower orbit occur practically at a1 = 0 and for increasingly smaller frequency.

On the other hand the threshold for the upper orbit is very high (a1 > 1). By
taking the limit W → −1 of expressions (5.11) to (5.14) and of (5.24)+ to (5.27)+ (or
by simply comparing figures 4 and 6) it can be seen that as W → −1 the threshold
for the upper heteroclinic orbit approaches the threshold for the homoclinic orbit,
in agreement with the fact that the heteroclinc orbits reduce to homoclinic orbits
when W = −1. In the same limit, the threshold for the lower heteroclinic orbit has
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a minimum that tends to zero; however the area above the threshold curve also
dimnishes to zero, i.e. both the left- and right-branches of the threshold curve tends
to the line σ = 0. Thus it is the threshold of the upper heteroclinic orbit that matters.

We have performed many numerical simulations based on direct integration of (2.1)
or, equivalently, (2.4). For brevity we shall only discuss results corresponding to the
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laboratory experiments with a view to uncovering the various bifurcations including
chaos. The experiments are therefore discussed first.

6. Laboratory observation of envelope bifurcations
6.1. The experimental setup

Preliminary tests for the two-gates setup in a narrow flume, as described in Part 1,
failed to yield interesting results predicted by the theory, owing to the relatively large
damping contributed by the sidewalls of the flume. We have therefore installed a
multi-gate barrier in a wide wave basin. The gate dimensions are slightly different
from those in Part 1. The general layout of the experiments is displayed in figure 7(a).

Thirteen hollow gates made of Plexiglas are hinged on a common horizontal axis
spanning the entire width at mid-length of a wide channel, as sketched in figure 7(b).
Two end gates next to the sidewalls are only half as wide as the other gates, in order
that the sidewalls serve as two planes of mirror symmetry. The hinges are made of
nylon bearings to reduce friction. Styrofoam is taped on the front and back of the
gates to boost buoyancy; its edges are rounded to reduce separation losses. The water
depth is maintained at 0.83 m.

Free-surface displacements are measured by four conductivity probes on the in-
cidence side and three on the transmission side. Gate rotations are recorded by
connecting potentiometers to each of the full-width gates. For this model, the eigen-
frequency is ω0/2π = 0.70 Hz. The following coefficients of the evolution equations
are computed theoretically by ignoring the rounded corners

cN = 27.330, cR = 2.271, cF = 1.630. (6.1)

As a preliminary step we find the frictional damping coefficients by giving neigh-
bouring gates an equal and opposite rotation from the vertical position, and releasing
them simultaneously. The time series of the free oscillations are used to determine
the best damping coefficients to fit the theoretical curve, as discussed in Part 1. The
results are

cL = 0.01, cQ = 0.48, (6.2)

which are considerably less than those found in the flume with just two gates. These
coefficients are used in all numerical experiments with incident waves.

6.2. Choice of experimental parameters

As noted in the local analysis of §4 and the global analysis of §5, period doubling
and homoclinc tangles are easily excited even with low modulational amplitude a,
when the carrier wave detuning is such that W → 1. However in this limit the
amplitude of the period-doubled limit cycle decreases to zero and becomes hard
to detect experimentally. Moreover, in the same limit, λ = 2 (1−W )1/2 → 0. The
forcing frequency σ, which must be around 2λ for a period-doubled (and eventually
chaotic) response to occur, must also be small. Since small modulational frequencies
correspond to long modulational periods, the neighbourhood of W → 1 would
demand prohibitively large data storage in experiments.

The global analysis showed that as W decreases from 1 to −1 the amplitude
thresholds for the homoclinic (|W | < 1), and upper heteroclinic tangles
(W < −1), become increasingly high (see figure 6); chaos is more difficult to gener-
ate experimentally. For horseshoe tangles arising from the lower heteroclinic orbit,
(W < −1), the threshold also increases as W decreases towards −1 (cf. figure 6).
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Figure 8. Measured gate response for Ω/2π = 0.04 Hz, a = 0.47; Synchronous envelope response.
(a) Time series of gate rotation; (b) spectrum of gate rotation; (c) envelope phase portrait and
Poincaré section ; (d) spectrum of gate envelope.

However, in this limit, interesting dynamics occurs only for small σ, so that the need
for large data storage renders the neighbourhood of W → −1 also impractical for
experiments.

In addition to the considerations above, cross-waves were observed on the incident
side of the finite wave basin, and limit the range of frequencies that can be used
to explore the bifurcation phenomenon for an infinitely long gate system. We have
therefore forcused our measurements around W = 0. Using the values in (6.2), we
find

α = 0.0831, β =
0.0061

A′/b′
, γ =

0.0719(
A′/b′

)1/2
. (6.3)

For an incident wave amplitude A′ = 0.015 m and half modal period b′ = 0.250 m,
(6.3) gives β = 0.102, γ = 0.293, i.e. {α, β, γ} = O(0.1). Thus dissipation by wave
radiation and in viscous boundary layers is indeed small, while damping by vortex
shedding is also not large; therefore the analytical approximations in previous sections
should be relevant.

The incident wave is defined by four physical parameters: the carrier wave am-
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Figure 9. As figure 8 but for a = 0.57; period-two envelope response.

plitude A
′
, the carrier wave detuning ∆ω, the modulation amplitude Ã′ and the

modulational frequency Ω. For each carrier wave amplitude A′ and detuning ∆ω, we
shall seek a region in the parameter plane (Ω, Ã′) for which a large variety of modu-
lational responses (synchronous, period-doubled, chaotic) occurs within the physical
constraint of the experiments.

From §4.1, the condition for subharmonic envelope bifurcation σ = 2λ = 4 (1−W )1/2

can be recast as

Ω/ω0

cFA
′
/b′

= 4

(
1− ∆ω/ω0

cFA
′
/b′

)1/2

or
∆ω

ω0

= cF
A′

b′
− Ω2

16ω2
0

b′

cFA′
, (6.4)

which relates the modulational frequency Ω, the amplitude A
′

and detuning ∆ω of
the carrier wave.

A second condition for subharmonic modulational resonance is that the amplitude
of modulation a = Ã′/A′ should be larger than the threshold given by the right-hand
side of (4.20). These two criteria define the regions of interest and provide guidance
for the experiments.
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Figure 10. As figure 8 but for a = 0.87; chaotic envelope oscillations.

6.3. Procedure of observation

With the help of an automated system for wave generation and data acquisition,
records are taken for a wide range of incident waves. As in Part 1, the amplitudes
of the incident and reflected carrier waves, and the corresponding sidebands are
determined from their peaks in the Fourier spectra of the free-surface displacements
measured at two points x and x+ d on the incidence side.

The time series of the gate rotation contains information regarding the fast oscilla-
tions of the trapped mode and the slow oscillations of the envelope modulation. By
the technique of Hilbert transform (Melville 1983), the time series of the envelope is
extracted.

For W = 0, we collected data by scanning over a significant range of both Ω
and a. The variety of observed bifurcation scenarios crudely resembles the numerical
simulations. Here we focus attention on the details of observed data for one modula-
tional frequency only, Ω/2π = 0.04 Hz; this choice was made because the threshold
of bifurcation is the lowest, as will be shown later. The steady component of the
incident wave amplitude is fixed at A = 0.015 m.



Subharmonic resonance of Venice gates in waves. Part 2 347

3

2

1

0

–1

–2

–3
–3 –2 –1 0 1 2 3

X (deg.)

(c)

Y
 (

de
g.

)

10–2

0 0.02 0.04 0.06 0.08

Frequency (Hz)

(d )

100

102

104

106

6

4

2

0

–2

–4

–6
0 50 100 150

t (s)

(a)

Θ
 (

de
g.

)

0.4 0.6 0.8

Frequency (Hz)

(b)

100

102

104

106

1.0

108

Po
w

er
 s

pe
ct

ru
m

 (
de

g.
2  

s)
Po

w
er

 s
pe

ct
ru

m
 (

de
g.

2  
s)

Figure 11. As figure 8 but for a = 1.02; chaotic envelope oscillations.

6.4. Observed bifurcation scenarios

Figure 8 shows the measured results for a = 0.47. Note that the left sideband is larger
than the right sideband. We also remark that the inclination of the line joining the
origin and the centre of the limit cycle (and the point Poincaré map of the phase
curve) with respect to the X-axis depends on the choice of the initial point in the
measured time series. It can be shown (Tran 1996) that as the initial point is changed
along a measured time series, this line rotates around the origin of the phase plane.
The size of the attractors and their distance from the origin and the envelope spectra
are however unaffected, hence the rotation is inconsequential dynamically. Physically
the distance between the centre of the limit cycle and the origin is the mean oscillation
amplitude of the time series and measures the energy peak at half the carrier wave
frequency, i.e. at ω0/2π = 0.7 rad s−1. The size of the limit cycle is a measure of the
modulation from the mean. We have also found that the phase portraits are affected
strongly by the precise value of the spectral peak. The resolution of the Fourier
spectrum however depends on the sampling rates. A minute shift of the peak value
(by, say, 10−7 Hz) can make a single line appear as a thick band We therefore choose
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Figure 12. As figure 8 but for a = 1.03; frequency down-shift.

the peak frequency by minimizing the size of the Poincaré map which should be a
point in principle.

Next, for a larger amplitude, a = 0.57 (figure 9), a period-two modulational response
appears. The asymmetry of the sidebands is again evident.

Around a = 0.77 transition to chaotic oscillations is observed. Figures 10 and 11
show the observed results for a = 0.87 and 1.02 which are representative of the regime
of the strange attractor. A period-four bifurcation from the period-doubled orbit has
been identified in two cases, a = 0.68 and a = 0.81, only by a small peak at Ω/4.
Poincaré sections constructed from the measurements are however not sufficiently
clear and are omitted.

Finally for a large amplitude of modulation, a = 1.03, a frequency downshift is
evident, as in figure 12. The spectrum of the envelope in figure 12(d) has a dominant
peak at Ω/2 and no energy at Ω. The spectra of the time series in figure 12(b) has
the peak at ω0 − Ω/2 with two sidebands shifted by ±Ω. Similar data are recorded
for a = 1.13 and a = 1.30 (Tran 1996).
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Figure 13. Predicted bifurcation scenarios for basin model, W = 0. Shaded areas: numerical
simulation; dashed curves: approximate thresholds for period doubling; solid curve: Melnikov
threshold.

7. Numerical bifurcation scenarios
7.1. Homoclinic tangles W = 0

Comprehensive numerical simulations have been performed for −1 < W < 1 to cover
the important part of the parameter plane of a vs. σ (∝ Ω). To see the overall picture,
the various scenarios for W = 0 are typical and are summarized in figure 13. To
facilitate comparison with experiments, numerical integration is first carried out in
non-dimensional coordinates; the results are then transformed to physical coordinates
via

A′

Ã′
= a ≡ A2

Ã2

, Ω = σω0cF
A′

b′
. (7.1)

The lowest threshold for period-doubling bifurcation is seen to be at Ω/2π =
0.040 Hz. The region of chaotic motion appears in a band bounded from both
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Figure 14. Computed gate response for Ω/2π = 0.04 Hz, a = 0.47. Synchronous response. (a) Time
series of gate rotation; (b) spectrum of gate rotation; (c) Phase trajectory and Poincaré map of gate
envelope; (d) spectrum of envelope.

above and below by subharmonic responses. There is a thin strip of period-four
response, embedded in a wider band of chaos, for modulational frequencies ranging
approximately from 0.032 to 0.06 Hz. The numerical thresholds for period-doubling
and for global chaos are in qualitative agreement with the approximate analytical
thresholds given by multiple-scales and Melnikov’s method respectively. Similar charts
have been obtained by Sammarco (1996) for different values of α, β, γ and W .

We next present the details of numerical integration of the dynamical system (2.4)
by fixing the modulational frequency at Ω/2π = 0.040 Hz for which measurements
have been described in the previous section. The computed time series of the envelope
X(T ), Y (T ) is first transformed to a time series of the gate rotation Θ ′(t′) by using
the definition (1.4) of ϑ = X + iY :

Θ ′(t′) =

(
cFA

′

cNb′

)1/2

(X + iY ) e−iωt′ + ∗ =

(
cFA

′

cNb′

)1/2

2
[
X(t′) cosωt′ + Y (t′) sinωt′

]
.

(7.2)
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Figure 15. As figure 14 but for a = 0.67; subharmonic response.

Since the detuning of the carrier wave is chosen to be zero, W = 0, in (7.2) ω = ω0.
Computed results for increasing a are plotted in groups of figures. In each group
(a) gives time series (7.2) of gate displacement, (b) the spectrum of (7.2), (c) the
phase-plane trajectories of the envelope in X,Y , and the Poincarè map marked by
a cross, and (d) the spectrum of the envelope X. The Poincaré map is obtained by
sampling the time series of the envelope after every interval of 2π/Ω.

For a = 0.47 the response is synchronous, as can be seen in figure 14. The results
are similar to the observed ones shown in figure 8. Note, in this and following graphs,
there is a common feature of all the spectra shown in (b): the left sidebands are
consistently larger than the right sidebands. This agrees with the observed data and
appears to be an inherent feature of the Landau–Stuart equation.

Theoretically, for small amplitude a, there are two coexisting limit cycles in the
Cartesian phase plane X,Y . They lie symmetrically with respect to the origin of the
phase plane and represent oscillations of period 2π/Ω around the fixed points s1,2 of
figure 1(e). A trajectory tends to one or the other depending on the initial conditions.
The corresponding two time series of the angular displacement are identical but for
a phase shift equal to π.

The threshold of period doubling is found numerically to be at a = 0.57. When
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Figure 16. As figure 14 but for a = 0.77. Period-four response.

the modulational amplitude is increased to a = 0.64, subharmonic resonance is fully
developed. We show in figure 15 the results for a = 0.67. In (b) the sidebands at
(ω0 ± Ω/2)/2π = 0.7 ± 0.02 Hz are strong, as in (d) at (Ω/2)/2π = 0.02 Hz. These
features are the same as those seen in the experiments for a = 0.57, as shown in figure
9. The period-doubled envelope bifurcates to a period-four orbit when a = 0.77. In
figure 16b) a small peak is born at ω0 ± Ω/4 and in (c) four fixed points appear in
the Poincaré map. In (d), the subharmonic at

(
Ω/4

)
/2π = 0.01 Hz is evident.

Chaos is fully developed when a = 0.81, as can be seen in figure 17. The spectrum
in (b) maintains its peak at ω0 but is broad-banded. In (c) the strange attractor
spreads across the origin, which is a saddle point, to all four quadrants of the phase
plane. Note that the S-shaped skeleton of the strange attractor resembles strongly the
homoclinc orbit in figure 1(e), indicating the effect of homoclinic tangle, i.e. infinite
transverse intersections of the stable and unstable manifolds near the homoclinic
connection of figure 1(e).

For a = 0.87, figure 18 shows that chaos is replaced by period quadrupling with a
downshift of the central spectral peak by Ω/4, as is clearly shown in (b), (c) and (d).

When a is increased to a = 0.97, chaotic motion reappears, as shown in figures



Subharmonic resonance of Venice gates in waves. Part 2 353

5

–5 0 5

X (deg.)

(c)

Y
 (

de
g.

)

10–2

0 0.02 0.04 0.06 0.08

Frequency (Hz)

(d )

100

102

104

106

6

4

2

0

–2

–4

–6
0 50 100 150

t (s)

(a)

Θ
 (

de
g.

)

0.4 0.6 0.8

Frequency (Hz)

(b)

100

102

104

106

1.0

108

0

–5

Po
w

er
 s

pe
ct

ru
m

 (
de

g.
2  

s)
Po

w
er

 s
pe

ct
ru

m
 (

de
g.

2  
s)

Figure 17. As figure 14 but for a = 0.81. Chaotic motion.

19(b) and 19(d) . The maximum energy is still around ω0−Ω/4. With further increase
of a, the spectral peak shifts down to

(
ω0 − Ω/2

)
/2π = 0.68 Hz.

For a = 1.07, chaos disappears again while frequency downshift is complete. Figure
20(a) shows that the modulation is strictly periodic while (b) shows the frequency
peak at ω0 − Ω/2, corresponding to the complete depletion of energy at ω0 in (d).
The closed trajectory in (c) is symmetrical with respect to the origin. For larger
modulational amplitudes a, the response remains subharmonic in the envelope, with
the peak shifted by Ω/2 and increasingly larger phase trajectory in the (X,Y )-plane.
The shape and size of the phase portraits are close to those observed experimentally
(cf. figure 12 for a = 1.03).

The scenario depicted in figures 14 to 20 is typical of numerical simulations at
other frequencies for different ranges of a (Sammarco 1996).

In summary, the theory largely confirms the laboratory observations, although
not always at precisely the same modulational amplitudes. In particular the observed
sequence of bifurcations leading to aperiodic motion is found in the numerical simula-
tions, and the phase-plane geometries of period-doubled orbits and strange attractors
essentially reproduced. In all the experimental spectra the left sideband is always
larger than the right sideband; this is confirmed by the theoretical computations.
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Figure 18. As figure 14 but for a = 0.87. Period-four and downshift by
(
Ω/4

)
/2π = 0.01 Hz.

Moreover, when the modulational wave amplitude a is sufficiently large, the observed
downshift of the central peak of the response is again predicted.

Better agreement would require experiments in a much larger wave basin, since
spurious standing waves have been observed along the wavemakers and on the inci-
dence side far from the gates. Such cross-waves result from reasonably large incident
waves (hence nonlinearity) at certain frequencies within the range of our interest.
In addition, rounding of gate corners to reduce damping implies a certain discrep-
ancy between the theoretical and experimental geometries, which may also contribute
to the discrepancies that remain between numerical predictions and observed data.
Needless to say, the realm of the Landau–Stewart equation is limited in its range of
time and amplitude; a more fully nonlinear theory would also reduce the remaining
discrepancies.

7.2. Heteroclinic tangles, W = −1.5

The dynamics for W < −1 involves heteroclinc tangles and is more complex, and
difficult to study in our laboratory. Figure 21 summarizes the numerical bifurcation
scenarios for W = −1.5. The Melnikov threshold for the upper (lower) heteroclinic
orbit is shown by the solid (dashed) curve. For low frequencies (< 0.06 Hz), period
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Figure 19. As figure 14 but for a = 0.97, chaotic motion.

doubling and chaos occur for a considerably above the predicted threshold for
heteroclinic tangles (solid line). The region of chaos is limited in size and chaotic
motion does not occur at all for very low frequency. This is consistent with the known
fact that the Melnikov threshold for horshoe tangles is a necessary but not always a
sufficient condition for global chaos (Moon, Cusumano & Holmes 1987). For higher
frequency (> 0.06 Hz) chaotic behaviour occurs only for relatively large a, and is
closer to the Melnikov threshold for the upper orbit (solid line).

In these numerical simulations, both trivial and non-trivial limit cycles are possible;
the solution settles in several cases on the trivial state. Indeed in figure 21 the entire
period-1 region above the band of chaotic response is the trivial solution.

Sample phase trajectories and resulting Poincaré sections are shown for W = −1.5
in figures 22(a, b, c) and 22(d, e, f) respectively. Figures 22(a) and 22(d) correspond to
the point in the parameter plane of figure 21 {Ω/2π, a} = {0.023, 1.29}, for which
global analysis suggest that only the lower heteroclinc orbit tangles. Figures 22(b)
and 22(e) are for {Ω/2π, a} = {0.045, 2.67}, where global analysis admits horseshoe
tangles for both lower and upper heteroclinic orbits. Finally figures 22(c) and 22(f)
are for {Ω/2π, a} = {0.12, 2.67} where instead tangles occur only for the upper orbit.
In this last case the phase trajectory never crosses the X-axis, a feature common to
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Figure 20. Computed gate response for Ω/2π = 0.04 Hz, a = 1.07. Downshift is complete. (a) Time
series of gate rotation; (b) spectrum of gate rotation; (c) phase trajectory and Poincaré map of gate
envelope; (d) spectrum of envelope

all the strange attractors belonging to the band of chaos for Ω/2π > 0.07 of figure
21.

8. Conclusions
To see the effects of finite bandwidth of the incident sea waves on the subharmonic

resonance of the proposed Venice gates, we have considered the simplest model
of a narrow-banded spectrum. The amplitude of the incident wave is periodically
modulated in time. As a consequence the evolution equation for the envelope of
gate oscillations becomes a second-order non-autonomous dynamical system. For
small damping and wave modulation, local bifurcations are analysed by multiple-
scale approximations to investigate modulational resonances. The prelude to chaos is
analysed by the Melnikov method for Smale’s horseshoe tangles of either homoclinic
or heteroclinic orbits in the phase plane. The approximate criteria for local and global
bifurcations give preliminary guidance for experiments.

Extensive numerical investigation of the above parameter plane corroborates with
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Figure 21. Predicted bifurcation scenarios for basin model, W = −1.5. Shaded areas: numerical
simulation; solid curve: Melnikov threshold for upper heteroclinic orbit; dashed curve: Melnikov
threshold for lower heteroclinic orbit.

the analytical predictions, and further delineated the regions of period quadrupling
and chaos.

For a fixed modulational frequency in the incident sea, hence sideband width
from the carrier wave, the general picture of the gate envelope can be summarized
as follows. For a wavetrain with small periodic modulation a, the gate envelope is
synchronous with the wave modulation. Increase of a induces bifurcations through a
sequence of period doublings until modulational chaos is attained. For higher a above
a band of chaos, the gate envelope returns to the state of subharmonic resonance,
which is distinguished from the period doubling at lower a by a phase orbit symmetric
about the origin. In the spectrum of the gate rotation, this state corresponds to a
downshift of the central frequency from half the incident carrier wave of a quantity
equal to half the modulational frequency. The response here is much larger than
the non-resonant response to the same modulational wave amplitude but at a larger
modulational frequency.

Numerical findings indicate that for sufficiently high frequency of modulation,
no temporal resonances of any kind are possible. This means that large sidebands
do not alter the resonance phenomenon induced by the carrier wave frequency.
Specifically the period-doubling bifurcation route to chaos occurs only in suffi-
ciently narrow wave sidebands, i.e. when the normalized separation σ of the side-
bands from the central peak is around twice the natural frequency of the envelope
λ = 2 (1−W )1/2. For increasingly positive detuning of the carrier wave, i.e. as W → 1,
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Figure 22. Sample strange attractors forW = −1.5. (a, b, c) Phase-plane trajectories. (d, e, f) Poincaré
sections. (a, d) Ω/2π = 0.023 Hz, a = 1.29. (b, e) Ω/2π = 0.045 Hz, a = 2.67. (c, f) Ω/2π = 0.12 Hz,
a = 2.47.

modulational instability occurs for sidebands increasingly close to the central peak,
and over a much longer time scale. On the other hand, as W decreases (negative de-
tuning ∆ω), the thresholds for homoclinic or heteroclinic tangles and period doubling
increase significantly. These findings should be helpful in the gate to avoid unwanted
resonances.

In the present study, attention has been limited to a single mode. It is known in
other physical contexts that chaotic motion can occur as a consequence of nonlinear
interaction between adjacent modes (Ciliberto & Gollub 1984 for Faraday waves, or
Mei & Zhou 1991 for bubble resonance by sound). Since adjacent gate modes can be
close according to the linearized theory of Mei et al. (1994), modal interaction is an
aspect worth investigating both theoretically and experimentally.

In the proposed design, the Venice gates are inclined at 50◦ from the horizon. It
is likely that gate evolution equation will remain of Landau–Stuart type. However,
both the first-order theory for the trapped modes, and the higher-order theory for
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computing the coefficients of the Landau–Stuart equation must require the numerical
solution of a number of wave–body interaction problems.

Finally, the effects of long-scale modulation along the barrier may require the study
of a nonlinear Schrödinger equation with a time-dependent coefficient; the likelihood
of spatial-temporal chaos should be interesting. Neglected in the present study, the
difference in mean sea levels on two sides of the barrier in a storm also warrant
additional efforts in the future.
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